Friday, September 22, 2017

[Herpetology • 2017] Phylogenetic Systematics of Dart-Poison Frogs and Their Relatives Revisited (Anura: Dendrobatoidea)

Grant, Rada, Anganoy-Criollo, et al., 2017.
South American Journal of Herpetology. 12(s1) 

Despite the impressive growth of knowledge on the phylogenetic systematics of dart-poison frogs and their relatives (Dendrobatoidea) over the past decade, many problems remain to be addressed. We analyzed up to 189 phenomic characters (morphology, behavior, defensive chemicals) and 15 mitochondrial and nuclear loci scored for 564 dendrobatoid and outgroup terminals, including 76 newly sequenced terminals and > 20 previously unanalyzed species, using tree-alignment and the parsimony optimality criterion in the program POY v.5.1.1 and additional analyses of the implied alignment using TNT v.1.5. Even though data coverage was highly heterogeneous, the strict consensus of 639 optimal trees is highly resolved and we detected only one instance of wildcard behavior involving a small clade of outgroup species. The monophyly of the median lingual process (MLP) possessing genus Anomaloglossus is decisively refuted, with the cis-Andean species being sister to Rheobates within Aromobatidae and the trans-Andean species nested within Hyloxalinae, implying two independent origins of the structure in Dendrobatoidea. Although this result was unexpected, it is not surprising given that the MLP evolved at least five times in Asian and African ranoids, including Arthroleptidae, Dicroglossidae, Mantellidae, and Rhacophoridae and either once in the most recent common ancestor of the massive clade Victoranura followed by independent losses or multiple times within component lineages. We restrict Anomaloglossus to the cis-Andean MLP-possessing species, describe a new genus for the trans-Andean MLP-possessing species, and resurrect Paruwrobates for its sister group, which includes Dendrobates andinus (formerly Ameerega), D. erythromos (formerly Hyloxalus and, until recently, Ameerega), and Prostherapis whymperi (formerly Hyloxalus). We also transfer Dendrobates maculatus from Ameerega to Epipedobates, making Ameerega an exclusively cis-Andean group. We describe two new species of the trans-Andean MLP-possessing genus—one from Cerro Tacarcuna, near the Colombo-Panamanian border, and the other from 800–900 m elevation on the western versant of the Colombian Cordillera Occidental (Cauca Department)—bringing the total number of species in the genus to seven. The discrete, round, white to yellowish-brown dots found on the venter of the new species from Cerro Tacarcuna and at least one other trans-Andean MLP-possessing species are formed by large, ellipsoid, densely distributed (up to 80 glands/mm) granular glands. Although specimens of the new species from Cerro Tacarcuna exuded a noxious milky substance when handled, lipophilic alkaloids were not detected. In addition to the unexpected placement of the trans-Andean MLP-possessing species, major findings include the unexpected placement of Colostethus ruthveni and its undescribed sister species (the “C.” ruthveni group) within Dendrobatinae as sister of the newly recognized tribe Dendrobatini (all dendrobatines except Phyllobates and the “C.” ruthveni group). We describe a new genus for C. argyrogaster and C. fugax to remedy the paraphyly of Colostethus caused by the placement of those species as sister to Ameerega. Our evidence rejects the sister group relationship of Dendrobates + Oophaga in favor of Dendrobates + Adelphobates, which is consistent with their uniquely low diploid chromosome number of 2n = 18 (2n = 20 in Oophaga). With the exception of Anomaloglossus and Colostethus, all other genera are monophyletic. We recognize several monophyletic species groups—including the Atlantic Forest, trans-Andean, and 22-chromosome groups within Allobates, the An. stepheni, An. megacephalus, and An. beebei groups in Anomaloglossus, the C. latinasus (formed by the C. inguinalis and C. latinasus clades) and C. fraterdanieli groups within Colostethus, and the Am. braccata and Am. rubriventris groups within Ameerega—identify unambiguously optimized phenomic synapomorphies, and summarize patterns in the evolution of the diploid chromosome number, swelling of Finger IV in males, relative length of Fingers II and III, length of Finger V, and testicular and intestinal pigmentation. Finally, we address criticisms of the current taxonomy of Neotropical poison frogs and their relatives, concluding that they are either overstated, misguided, or false, and that the current system of names better communicates knowledge of the diversity of these frogs. Our results highlight the importance of increased taxon sampling, and we conclude by identifying key species to include in future phylogenetic analyses.

Keywords: Andes, Aromobatidae, Chocó, Dendrobatidae, Median lingual process, New genus, New species, Phylogeny, Total evidence


Figure 10(A): Juvenile female Ectopoglossus saxatilis sp. nov. photographed with the assistance of a camera-mounted flash (IAvH 14614, 18.3 mm SVL; photos: M. Rada). .

Ectopoglossus gen. nov.
Type species. Ectopoglossus saxatilis sp. nov.
Immediately more inclusive taxon. Hyloxalinae Grant et al., 2006.
Sister group. Paruwrobates Bauer, 1994.

Content (7 species). Ectopoglossus absconditus sp. nov., Eastralogaster (Myers et al., 2012) comb. nov., Eatopoglossus (Grant et al., 1997) comb. nov., Econfusus (Myers and Grant, 2009) comb.  nov., Eisthminus (Myers et  al., 2012) comb.  nov., Elacrimosus (Myers, 1991) comb. nov., and Esaxatilis sp. nov.

Etymology. Ectopoglossus gen. nov. (gender masculine) is derived from the Greek ektopos, meaning away or out of a place (ek- “out”  + topos “place”), and glossa, meaning tongue, in reference to the geographically and phylogenetically ectopic distribution of this median lingual process-possessing clade.

Ectopoglossus absconditus sp. nov.

Etymology. The specific epithet is the Latin absconditus, hidden, in reference to this species being hidden in plain site, abscondita in campo visum, for nearly 80 years. The type specimens were collected in 1938 and 1939 and lay ensconced in the KU amphibian collection until finally being “discovered” almost 80 years later when TG examined the contents of a jar labeled “Colostethus  sp.” that contained this and several other species of dendrobatids. To our knowledge the species has not been collected again, although biological surveys in the region have been limited in recent decades due to armed conflict.

Ectopoglossus saxatilis sp. nov. 
Etymology. The specific epithet is Latin and means “found among rocks” in reference to the streamside habitat of the species.

Taran Grant, Marco Rada, Marvin Anganoy-Criollo, Abel Batista, Pedro Henrique Dias, Adriana Moriguchi Jeckel, Denis Jacob Machado and José Vicente Rueda-Almonacid. 2017. Phylogenetic Systematics of Dart-Poison Frogs and Their Relatives Revisited (Anura: Dendrobatoidea). South American Journal of Herpetology. 12(s1); S1-S90. DOI:  10.2994/SAJH-D-17-00017.1

[Botany • 2017] Gelidocalamus xunwuensis • A New Species (Poaceae, Bambusoideae) from southeastern Jiangxi, China

Gelidocalamus xunwuensis  W.G.Zhang & G.Y.Yang

Gelidocalamus xunwuensis W.G.Zhang & G.Y.Yang, a new species collected from Xunwu County of Jiangxi Province in China, is described and illustrated. The new species is similar to G. stellatus in the habit, but differs by internodes sparsely hairy with granuliferous warts, culm sheath stiffly hairy, culm sheath blade broadly lanceolate to narrowly triangular, each node with a ring of appressed trichomes below, foliage leaves broadly lanceolate to narrowly oblong, and new shoots occurring in late October.

Keywords: Arundinarieae, Bambusoideae, bamboo, leaf epidermis, SEM, taxonomy

Figure 4. Gelidocalamus xunwuensis.
A habitat plants B new shoot CL detailed characters, show branch and branch sheath (CD), transection of culm and pith-cavity (E), culm and its leaf sheath (FJ), buds (K) and foliage leaf (L). Scale bar: 5 cm (A–D, F, L), 5 mm (E, G–K).

Gelidocalamus xunwuensis W.G.Zhang & G.Y.Yang, sp. nov.

Diagnosis:  Similar to G. stellatus Wen (1982: 22) in the habit and branch, but differs by culms sparsely hairy (early period) with granuliferous warts (adult or later period), each node with a ring of fulvous appressed trichomes below, culm leaf sheath densely hispidulous with a blade broadly lanceolate and 3–5–paired oral setae, branch sheath glabrous, foliage leaves broadly lanceolate to narrowly oblong, and new shoots late October.

Etymology:  The species epithet xunwuensis refers to the locality of the type specimen: Xunwu County, Jiangxi, China.

Distribution and habitat:  Gelidocalamus xunwuensis occurs under evergreen broad-leaved forests, along ravine, and roadsides at elev. ca. 400–600 m. It grows together with Castanopsis kawakamii Hay., Dicranopteris pedata (Houtt.) Nakaike, Gnetum parvifolium (Warb.) C. Y. Cheng & Chun, Eurya chinensis R. Br., Semiliquidambar cathayensis H. T. Chang, and Ormosia semicastrata Hance. Gelidocalamus xunwuensis is currently known from only one small populations (less than 100 culms) in the southern China.

 Wen-Gen Zhang, Xue-Nan Ji, Yu-Guang Liu, Wei-Jian Li and Guang-Yao Yang. 2017. Gelidocalamus xunwuensis (Poaceae, Bambusoideae), A New Species from southeastern Jiangxi, China. PhytoKeys. 85: 59-67.  DOI:  10.3897/phytokeys.85.13804

[Crustacea • 2017] Diogenes heteropsammicola • A New Species of Hermit Crab (Decapoda, Anomura, Diogenidae) Replaces A Mutualistic Sipunculan in A Walking Coral Symbiosis

 Diogenes heteropsammicola 
 Igawa & Kato, 2017


Symbiont shift is rare in obligate mutualisms because both the partners are reciprocally dependent on and specialized to each other. In the obligate accommodation–transportation mutualism between walking corals and sipunculans, however, an unusual saltatory symbiont shift was discovered. In shallow waters of southern Japan, an undescribed hermit crab species was found living in corallums of solitary scleractinian corals of the genera Heterocyathus and Heteropsammia, replacing the usual sipunculan symbiont. We described the hermit crab as a new species Diogenes heteropsammicola (Decapoda, Anomura, Diogenidae), and explored its association with the walking corals. This hermit crab species obligately inhabits the coiled cavity of the corals, and was easily distinguished from other congeneric species by the exceedingly slender chelipeds and ambulatory legs, and the symmetrical telson. Observations of behavior in aquaria showed that the new hermit crab, like the sipunculan, carries the host coral and prevents the coral from being buried. This is an interesting case in which an organism phylogenetically distant from Sipuncula takes over the symbiotic role in association with a walking coral. The hermit crab species is unique in that its lodging is a living solitary coral that grows with the hermit crab in an accommodation–transportation mutualism.

Fig 6. Diogenes heteropsammicola sp. nov. in life. A, an individual in an aquarium, carrying the coral. 

Fig 6. Diogenes heteropsammicola sp. nov. in life. B, an individual removed from its host coral. Scale bar: 1 mm.

Taxonomic account
Genus Diogenes Dana, 1851

Diogenes heteropsammicola sp. nov.

Fig 7. Behavior of Diogenes heteropsammicola sp. nov.
A–C, sequence of behaviors to recover from an overturned to upright position in which the hermit crab leans out of the overturned coral (A), grasps the bottom with its ambulatory legs and left cheliped (B), and turns the coral upright using the pleon (C); D–F, sequence of behaviors to overcome burial in sediment, whereby the buried hermit crab (D) pushes away the sediment using its chelipeds and ambulatory legs (E), and then crawls away (F). 

Remarks: Diogenes heteropsammicola sp. nov. belongs to the D. edwardsii species group because of the intercalary rostriform process being smooth on the lateral margins, the antennal peduncle distinctly overreaching the distal corneal margin, and the antennal flagellum bearing a pair of long setae on the distal margin of each article ventrally. The new species is readily distinguished from all other species in this group by its exceedingly slender chelipeds and ambulatory legs, its symmetrical telson, red and white coloration, and the unique symbiotic habit with solitary corals.

Etymology: The new species is named after its mutualistic relationship with the solitary scleractinian corals of the genera Heteropsammia, keeping in mind that this hermit crab is also associated with Heterocyathus corals.

Distribution: At present, known only from Oshima Strait, between Kakeroma Island and Amami-Oshima Island, Kagoshima, Japan, depths of 60–80 m, and Ikomo Bay, western coast of Kakeroma Island, depth of 31 m.

Momoko Igawa and Makoto Kato. 2017. A New Species of Hermit Crab, Diogenes heteropsammicola (Crustacea, Decapoda, Anomura, Diogenidae), Replaces A Mutualistic Sipunculan in A Walking Coral Symbiosis. PLoS ONE. 12(9); e0184311.  DOI: 10.1371/journal.pone.0184311

New hermit crab uses live coral as its home


Thursday, September 21, 2017

[Herpetology • 2017] Buergeria otai • Acoustic Differentiation and Behavioral Response reveals Cryptic Species within Buergeria Treefrogs (Anura, Rhacophoridae) from Taiwan

Buergeria otai 
Wang, Hsiao, Lee, Tseng, Lin, Komaki & Lin, 2017


Buergeria japonica is a widely distributed treefrog occurring from Ryukyu Archipelago to Taiwan. Across this wide distributional range, we combined molecular, acoustic, morphological, and behavioral characters to clarify the taxonomic status among these insular populations. Genetic differentiation in mitochondrial sequences indicated an over 16% divergence among two deeply divergent clades: Japanese clade distributes in Ryukyu Archipelago and northwestern drainages of Taiwan, while Taiwanese clade distributes in the remaining drainages on Taiwan. The Taiwanese clade can be distinguished from the nominative species not only by molecular and morphological differences, but also distinguishable by considerable acoustic differentiation, which is extraordinarily noticeable for an additional type of long call that never recorded from Japanese clade. The two clades form a parapatric distribution pattern with narrow contact zones both in western and eastern Taiwan. Playback experiments indicated that male frogs show significantly stronger defensiveness against conspecific calls rather than heterospecific calls, indicating that these signals play a crucial role in species recognition. Here we describe the Taiwanese clade as a new species; the behavioral response and the magnitude of gene flow across their contact zones are especially worth for detailed studies.

Species description

Family Rhacophoridae Günther, 1859
Genus Buergeria Tschudi, 1838

Buergeria otai sp. nov.
Ixalus japonicus—Hallowell, 1861 "1860", Proc. Acad. Nat. Sci. Philadelphia, 12: 501. 
Polypedates japonicus—Stejneger, 1907, Bull. U.S. Natl. Mus., 58: 155. 
Rhacophorus (Rhacophorusjaponicus—Ahl, 1931 in Das Tierreich, 55: 111. 
Rhacophorus (Rhacophorusbuergeri japonicus—Wolf, 1936, Bull. Raffles Mus., 12: 166. 
Buergeria japonica—Liem, 1970, Fieldiana, Zool., 57: 90.

Etymology:  The specific epithet of the new species “otai” is a latinized patronymic noun in genitive case, dedicated to Prof. Hidetoshi Ota for his great contribution to herpetology and biogeography in East Asia, including Taiwan and adjacent regions. During 1980s to 1990s, Ota published four reptile species in Taiwan, carefully reviewed the herptile fauna across the East Asian Arc, and provided great assistance and encouragement to new-generation herpetologists in this region. We suggest the following common name “Ota’s stream tree frog” in English.

Diagnosis: Buergeria otai sp. nov. is characterized by a combination of the following characters: (1) a small-sized rhacophorid, body moderately slender; (2) SVL in adult males 23.1–29.3 mm (N = 133; mean ± SD = 26.57 ± 1.21 mm); females 29.7–37.5 mm (N = 3; 32.44 ± 4.42 mm); (3) dorsum slightly tubercular, with a pair of parallel tubercles on scapula; (4) head triangular, snout rounded and somewhat acute; (5) tips of fingers and toes dilated, forming expanded disks (over twice the width of phalanges); (6) tibiotarsal articulation on adpressed limb reaching beyond snout tip; (7) forelimb webbing absent; (8) hindlimb webbing partial, webbing formula (the number of phalanges free of web): I 1–1 II 1–2 III 1–1 IV 2–1 V; (9) vertebral stripe absent; (10) dark dorsal marking in the shape of inverted triangle between the eyes; (11) dark dorsal marking in a form of letter X or H extending from scapula to the middle of the back; (12) chin gray-white, with small irregular mottling; belly gray-white; (13) arms and thighs with sparse brownish bands; (14) regular tiny white spots on the ventral side of the thighs; usually concentrated at the base of the thighs.

Fig 6. Buergeria japonica (A, C) and Buergeria otai sp. nov. (B, D, E, F) in live. The irregular patches of B. japonica on the thighs could be compared to the regular tiny spots of Buergeria otai sp. nov., regardless the intraspecific variation from very few (E) to many (F).
Photographed by YJ Liang (A, C), CM Tsao (B), and HN Nguyen (D, E, F).

Natural history notes.
Although belonging to the Old-world treefrog family Rhacophoridae, Buergeria otai sp. nov. is specialized to live in the streams like all its congeners. They prefer to gather in small ditches or shallow waters near by the streams, but seldom entering into the major river course. Breeding season usually lasts from February to October, with a major peak from April to July (personal observation in this study), but may appear all year round in some habitats. Males gather to form chorus beside the streams after sunset, and the chorus reach its climax near midnight. Eggs 1.2–1.4 mm in diameter, attached on vegetation or spread on the substrates in shallow water, hatched after 24–36 hr. Tadpoles herbivorous or detritivorous, live benthically in shallow waters, with a larval stage period 15–30 days, depending on the water temperature.

Both Buergeria otai sp. nov. and B. japonica are well known for their special tolerance in geothermal hot springs, which seems to be an extraordinary adaptation from all anuran species in the world. The tadpoles of the frogs often show thermal affinity by approaching hot waters with temperature higher than 30°C, and their critical thermal maxima could reach more than 41°C. This adaptation was deduced to extend the breeding season, decrease the hatching rate, and increase the tadpole size. Furthermore, B. japonica was also well addressed for their special to salt tolerance. Although Buergeria otai sp. nov. is suspected to share the same tolerance, there was not yet an experiment designed to test this ability in this clade.

Ying-Han Wang, Yu-Wei Hsiao, Ko-Huan Lee, Hui-Yun Tseng, Yen-Po Lin, Shohei Komaki and Si-Min Lin. 2017. Acoustic Differentiation and Behavioral Response reveals Cryptic Species within Buergeria Treefrogs (Anura, Rhacophoridae) from Taiwan. PLoS ONE. 12(9); e0184005.  DOI:  10.1371/journal.pone.0184005

[Ornithology • 2017] Tapping the Woodpecker Tree for Evolutionary Insight

Shakya, Fuchs, Pons & Sheldon, 2017 

• We compared DNA sequences of six loci from 203 of the 217 recognized species to construct a comprehensive tree of intrafamilial relationships of woodpeckers and found numerous unknown relationships among clades and species.
• We discuss how convergence, mimicry, and potential cases of hybridization obscured woodpecker relationships for morphological taxonomists.
• We also used the tree to analyze rates of diversification and biogeographic patterns within the family.

Molecular phylogenetic studies of woodpeckers (Picidae) have generally focused on relationships within specific clades or have sampled sparsely across the family. We compared DNA sequences of six loci from 203 of the 217 recognized species of woodpeckers to construct a comprehensive tree of intrafamilial relationships. We recovered many known, but also numerous unknown, relationships among clades and species. We found, for example, that the three picine tribes are related as follows (Picini, (Campephilini, Melanerpini)) and that the genus Dinopium is paraphyletic. We used the tree to analyze rates of diversification and biogeographic patterns within the family. Diversification rate increased on two occasions during woodpecker history. We also tested diversification rates between temperate and tropical species but found no significant difference. Biogeographic analysis supported an Old World origin of the family and identified at least six independent cases of New World-Old World sister relationships. In light of the tree, we discuss how convergence, mimicry, and potential cases of hybridization have complicated woodpecker taxonomy.

Keywords: biogeography; convergence; diversification rates; phylogeny; Picidae; rate-shifts

Subir B. Shakya, Jérôme Fuchs, Jean-Marc Pons and Frederick H. Sheldon. 2017. Tapping the Woodpecker Tree for Evolutionary Insight. Molecular Phylogenetics and Evolution. In Press.  DOI: 10.1016/j.ympev.2017.09.005

New paper by #LSUMNS student Subir Shakya & Curator Fred Sheldon in MP&E. "Tapping the Woodpecker Tree for Evolutionary Insight" 

[Botany • 2017] Asplenium minutifolium (Aspleniaceae) • A New Species from Thailand

Asplenium minutifolium Kanem. & Tagane


A new species of Asplenium (Aspleniaceae), Asplenium minutifolium Kanem. & Tagane, from Phu Kradueng National Park, Loei Province, Northeast Thailand and Khao Yai National Park, Nakhon Nayok Province, Central Thailand, is described and illustrated. This species can be distinguished from all similar species in East and South-East Asia by its simple and small lamina (1–5 × 0.3–0.7 cm), small and entire pinnae (1–4 × 0.8–2.5 mm), reflexed pinna arrangement (>90° from the midrib) in the lower 2/3 of the lamina and a sori arrangement that is almost always arranged in a single row on the basiscopic vein. 

KEYWORDS: Asplenium, Aspleniaceae, Pteridophyte, Fern, new species, Phu Kradueng National Park, Khao Yai National Park, Thailand.

Figure 2. Asplenium minutifolium  Kanem. & Tagane, sp. nov.
. habit; B. portion of lamina (undersurface) showing sori; C. rhizome with scales; D. habitat.

Asplenium minutifolium Kanem. & Tagane, sp. nov. 

Similar to Asplenium kiangsuense Ching & Y.X.Jing of southern China in size and shape of lamina, but differs in having a narrower lamina (ca 0.7 cm wide in A. minutifolium vs. ca 1 cm wide in A. kiangsuense), wingless rachis (vs. 2 slightly raised lateral wings), smaller pinnae (1–4 × 0.8–2.5 mm vs. 4–5 × 4–5 mm), generally fewer sori per pinna (1– 3(–4) vs. 3–5), and in the sori arrangement (usually arranged in a row vs. arranged oppositely). Also similar to Asplenium siamense Tagawa & K.Iwats. of North-East Thailand, but can be distinguished by its simple pinnae at the tip of lamina (vs. lamina forked several times at the tip), thicker pinnae (thickly papery vs. thinly papery), reflexed pinna arrangement in lower part (vs. divaricate around lamina), and pinnae with entire or slightly undulate margins (vs. shallowly lobed (lobes to ca 1mm long)). 
–– Type: Thailand. Loei Province, Phu Kradueng National Park, Lom Sak Cliff, alt. 1292 m, 12 June 2015, Kanemitsu et al. T4736 (holotype BKF!, isotype TNS!).  

Distribution.–– Currently Asplenium minutifolium is known only from Phu Kradueng National Park and Khao Yai National Park. 

Ecology.–– In Phu Kradueng National Park, Asplenium minutifolium occurs in a semi-shaded and damp rock crevice that is ca 50 cm wide and 10 cm deep, on the plateau at an altitude of ca 1300 m. Associated fern and lycophyte species include Aglaomorpha rigidula (Sw.) Hovenkamp & S.Linds., Goniophlebium subauriculatum (Blume) C.Presl, Oleandra undulata (Willd.) Ching, Pyrrosia lingua (Thunb.) Farw. var. heteractis (Mett. ex Kuhn) Hovenkamp, and Selaginella siamensis Hieron. Other than the elevation, nothing is known about the ecology of this species at Khao Yai National Park. 

Etymology.–– The species epithet “minutifolium” refers to the very small lamina and pinnae of this species.

 Hironobu Kanemitsu, Shuichiro Tagane, Somran Suddee, Sukid Ruangruaea, Tetsukazu Yahara. 2017. Asplenium minutifolium (Aspleniaceae), A New Species from Thailand. THAI FOREST BULL., BOT.  45(1); 29–34.  DOI: 10.20531/tfb.2017.45.1.06

[PaleoOrnithology • 2017] Late Pleistocene Songbirds of Liang Bua (Flores, Indonesia); The First Fossil Passerine Fauna Described from Wallacea

Figure 3: Late Pleistocene passerines from Liang Bua.
 (A) Left tarsometatarsus of Philemon sp. (LB-Av-740), (B) left tarsometatarsus of P. buceroides (NMNH 347688); (C) right femur of Philemon sp.(LB-Av-795), (D) right femur of P. buceroides (NMNH 347688); (E) right tibiotarsus of cf. Philemon (LB-Av-857), (F) right tibiotarsus of P. buceroides (NMNH 347688), (G) left tibiotarsus (LB-Av-726) of cf. Philemon, (H) right tibiotarsus (LB-Av-775) cf. Philemon;
(I) right humerus of Rhipidura sp. (LB-Av-762), (J) right humerus of R. albicollis (NMNH 620568);
 (K) distal fragment of right humerus of Corvus cf. macrorhynchos (LB-Av-856), (L) right humerus of C. macrorhynchos (NMNH 641775); (M) right scapula of Corvus cf. macrorhynchos (LB-Av-766), (N) right scapula of C. macrorhynchos (NMNH 641775).
 (scale bars 1 cm) DOI: 10.7717/peerj.3676


Passerines (Aves: Passeriformes) dominate modern terrestrial bird communities yet their fossil record is limited. Liang Bua is a large cave on the Indonesian island of Flores that preserves Late Pleistocene–Holocene deposits (∼190 ka to present day). Birds are the most diverse faunal group at Liang Bua and are present throughout the stratigraphic sequence.

We examined avian remains from the Late Pleistocene deposits of Sector XII, a 2 × 2 m area excavated to about 8.5 m depth. Although postcranial passerine remains are typically challenging to identify, we found several humeral characters particularly useful in discriminating between groups, and identified 89 skeletal elements of passerines.

At least eight species from eight families are represented, including the Large-billed Crow (Corvus cf. macrorhynchos), the Australasian Bushlark (Mirafra javanica), a friarbird (Philemon sp.), and the Pechora Pipit (Anthus cf. gustavi).

These remains constitute the first sample of fossil passerines described in Wallacea. Two of the taxa no longer occur on Flores today; a large sturnid (cf. Acridotheres) and a grassbird (Megalurus sp.). Palaeoecologically, the songbird assemblage suggests open grassland and tall forests, which is consistent with conditions inferred from the non-passerine fauna at the site. Corvus cf. macrorhynchos, found in the Homo floresiensis-bearing layers, was likely part of a scavenging guild that fed on carcasses of Stegodon florensis insularis alongside vultures (Trigonoceps sp.), giant storks (Leptoptilos robustus), komodo dragons (Varanus komodoensis), and probably H. floresiensis as well.

Hanneke J.M. Meijer​, Rokus Awe Due​, Thomas Sutikna, Wahyu Saptomo, Jatmiko, Sri Wasisto, Matthew W. Tocheri and Gerald Mayr. 2017. Late Pleistocene Songbirds of Liang Bua (Flores, Indonesia); The First Fossil Passerine Fauna Described from Wallacea.
 PeerJ. 5: e3676.  DOI: 10.7717/peerj.3676

[Diplopoda • 2017] Two New Species of the Millipede Genus Glyphiulus Gervais, 1847 (Spirostreptida: Cambalopsidae) from Southwest China

Glyphiulus latus Jiang, Lv,  Guo, Yu & Chen, 2017


Two new Chinese species of the millipede genus Glyphiulus Gervais, 1847, Glyphiulus latus sp. nov. and Glyphiulus liangshanensis sp. nov., from three caves in Sichuan Province are described. According to the structure of the first male leg pair, the new species belong to the javanicus-group.

Keywords:  Myriapoda, taxonomy, troglobitic, endemic, biodiversity


Xuan-Kong Jiang, Jing-Cai Lv, Xuan Guo, Zhi-Gang Yu and Hui-Ming Chen. 2017. Two New Species of the Millipede Genus Glyphiulus Gervais, 1847 from Southwest China (Diplopoda: Spirostreptida: Cambalopsidae). Zootaxa4323(2); 197–208.   DOI:  10.11646/zootaxa.4323.2.3

[Ichthyology • 2017] Trichomycterus pascuali • A New Species of Trichomycterus (Siluriformes: Trichomycteridae) Lacking Pelvic Fins from Paranapanema Basin, southeastern Brazil

Trichomycterus pascuali
Ochoa, Silva, Silva, Oliveira & Datovo, 2017


A new species of trichomycterid catfish, Trichomycterus pascuali, is described from Paranapanema basin and is distinguished from all congeners by the possession of five pectoral-fin rays and the absence of pelvic fin, girdle, and muscles. Additional features further differentiate the new species from the other congeners lacking pelvic fins, T. candidus, T. catamarcensis, and T. tropeiro. The identification of T. pascuali is additionally corroborated by genetic divergence based on DNA-barcode analysis. Osteological and myological data unequivocally support the inclusion of the new species in the Trichomycterinae and molecular analyses justify its allocation to the genus Trichomycterus rather than Eremophilus, a trichomycterine taxon traditionally diagnosed by the lack of pelvic fins. Our genetic analysis further indicates that pelvic fins were independently lost in E. mutisii, T. candidus, and T. pascuali.

Keywords: Pisces, Upper Paraná Basin, Freshwater catfish, pelvic-fin loss, taxonomy

FIGURE 2. Body coloration patterns observed in Trichomycterus pascuali, LBP 23323, (A) 45.4 mm SL, (B) 52.2 mm SL. 

Luz E. Ochoa, Gabriel S. C. Silva, Guilherme J. Costa E. Silva, Claudio Oliveira and Alessio Datovo. 2017. New Species of Trichomycterus (Siluriformes: Trichomycteridae) Lacking Pelvic Fins from Paranapanema Basin, southeastern Brazil.   Zootaxa. 4319(3); 550–560. DOI:  10.11646/zootaxa.4319.3.7

Wednesday, September 20, 2017

[Herpetology • 2017] Worms in the Sand: Systematic Revision of the Australian Blindsnake Anilios leptosoma (Robb, 1972) Species Complex (Squamata: Scolecophidia: Typhlopidae) from the Geraldton Sandplain, with Description of Two New Species

 Anilios obtusifrons Ellis & Doughty,
  in Ellis, Doughty, Donnellan, Marin & Vidal, 2017 


The blindsnake genus Anilios (formerly Ramphotyphlops) is the largest and most diverse genus of snakes in Australia with 45 currently recognized species. Recent molecular genetic studies of the genus have identified high levels of cryptic diversity within many taxa, suggesting true species diversity is greatly underestimated. Anilios leptosoma is a slender blindsnake endemic to the mid-west of Western Australia. Although morphological variation has been identified within the species in the past, the systematics and true diversity remained unstudied. Here we use recent molecular data to guide a reappraisal of morphology in order to provide a taxonomic revision of the A. leptosoma species complex. We redescribe Aleptosoma and describe two new species that occur to the south of most of true A. leptosoma’s distribution: A. systenos sp. nov. and Aobtusifrons sp. nov. Anilios systenos sp. nov. is known from the Geraldton region with the furthest record only 100 km to the north-east, a very small range for a species of snake. Anilios obtusifrons sp. nov. has an even smaller distribution, as it is only known from a small coastal area south of Kalbarri and may represent a range-restricted taxa. All species are genetically divergent from each other and can be distinguished by consistent morphological characteristics, including the shape of the snout, the termination point of the rostral cleft and number of mid-body scale rows and ventral scales.

Keywords:  Reptilia, taxonomy, morphology, mtDNA, nDNA, cryptic species, cryptic diversity, Ramphotyphlops leptosomaAnilios systenos sp. nov., Anilios obtusifrons sp. nov., Western Australia

Typhlopidae Merrem, 1820
Anilios Gray, 1845

Type species. Anilios australis Gray, 1845, by subsequent designation by Stejneger (1904) [p. 683].

Etymology. Masculine noun formed from the Greek words annot and heliossun (without sun) in reference to the fossorial or below ground habits of these species (Savage & Boundy 2012; Hedges et al. 2014).  

Anilios leptosoma (Robb, 1972) 
Murchison Blindsnakes

Etymology. Derived from the Greek words leptos meaning fine or thin and soma meaning body in reference to the thin thread-like appearance of the species. The amendment to the specific epithet to A. ‘leptosomus’ by McDiarmid et al. (1999) and subsequently accepted by other authors (Hedges et al. 2014; Pyron & Wallach 2014; Wallach et al. 2014) is not warranted (Shea 2015). As Robb (1972) did not state explicitly the use of the word ‘soma’ as a noun or adjective, it is to be treated as a noun and does not change from A. leptosoma with the resurrection of Anilios by Hedges et al. (2014).

Anilios systenos sp. nov. Ellis & Doughty
Sharp-snouted Blindsnakes

Etymology. Derived from the Greek word systenos, meaning ‘tapering to a point’ in reference to the tapering appearance of the head and snout to a rounded point when viewed dorsally.

FIGURE 6. Anilios obtusifrons sp. nov. (WAM R129778) in life (photograph—B. Maryan).

Anilios obtusifrons sp. nov. Ellis & Doughty
Blunt-snouted Blindsnakes

Etymology. From a combination of the Latin words obtusus meaning ‘blunt or dull’ and frons meaning ‘front’ in reference to the rounded or blunt appearance of the snout in dorsal and lateral view.  

Ryan J. Ellis, Paul Doughty, Stephen C. Donnellan, Julie Marin and Nicolas Vidal. 2017. 
Worms in the Sand: Systematic Revision of the Australian Blindsnake Anilios leptosoma (Robb, 1972) Species Complex (Squamata: Scolecophidia: Typhlopidae) from the Geraldton Sandplain, with Description of Two New Species.   Zootaxa. 4323(1); 1–24.  DOI:  10.11646/zootaxa.4323.1.1

[Entomology • 2017] Themira lohmanusHidden in the Urban Parks of New York City: A New Species of Themira (Sepsidae, Diptera) Described Based on Morphology, DNA Sequences, Mating Behavior, and Reproductive Isolation

 Themira lohmanus   Ang, 2017

New species from well-studied taxa such as Sepsidae (Diptera) are rarely described from localities that have been extensively explored and one may think that New York City belongs to this category. Yet, a new species of Themira (Diptera: Sepsidae) was recently discovered which is currently only known to reside in two of New York City’s largest urban parks. Finding a new species of Themira in these parks was all the more surprising because the genus was revised in 1998 and is not particularly species-rich (13 species). Its status is confirmed as a new species based on morphology, DNA sequences, and reproductive isolation tests with a closely related species, and is described as Themira lohmanus Ang, sp. n. The species breeds on waterfowl dung and it is hypothesized that this makes the species rare in natural environments. However, it thrives in urban parks where the public feeds ducks and geese. The mating behavior of Themira lohmanus was recorded and is similar to the behavior of its closest relative T. biloba.

Keywords: cryptic species, Sepsidae, species description

Figure 2. Adult male (A–M), showing lateral (A) and dorsal (B) views of habitus, anterior (C) and ventral (D) views of head capsule, anterior and posterior views of fore leg (E), mid leg (F) and rear leg (G); ventral view of abdomen (H) showing modified 4th sternites; anterior (I), dorsal (J), left (K) and right (L) views of hypopygium, as well as various views of the penis (M).

Figure 3. Adult female (A–H), showing lateral (A) and dorsal (B) views of habitus (sans abdomen), anterior (C) and ventral (D) views of head capsule, anterior and posterior views of fore leg (E), mid leg (F) and rear leg (G), and ventral view of abdomen (H).

Themira lohmanus Ang, sp. n.

Diagnosis:  Themira lohmanus is a relatively large, robust-looking sepsid species that resembles T. biloba. However, adult T. lohmanus males can be readily differentiated from the latter by their uniquely shaped, asymmetrical surstyli, which is symmetrical in T. biloba (Fig. 1A, see Morphological analysis section). While females of these two species do not have distinct structural differences, they can potentially be distinguished based on the color of the sclerous cuticle: in T. biloba, it tends to be glossy black while T. lohmanus tends to have a cupreous tinge. However, these characters may not be easily differentiated in faded specimens.

Etymology:  The new species is named after David J. Lohman, for his generous contributions of specimens to sepsid taxonomy.

Distribution: Nearctic. Thus far only found in New York City (Central Park and Prospect Park); likely to be found in more localities in the future, especially where waterfowl congregate.

 Yuchen Ang, Rudolf Meier, Kathy Feng-Yi Su and Gowri Rajaratnam. 2017. Hidden in the Urban Parks of New York City: Themira lohmanus, A New Species of Sepsidae Described Based on Morphology, DNA Sequences, Mating Behavior, and Reproductive Isolation (Sepsidae, Diptera).  ZooKeys. 698; 95-111.  DOI: 10.3897/zookeys.698.13411

[Herpetology • 2017] Preliminary Estimation of Home Range Size for Meristogenys orphnocnemis, A Common Bornean Ranid, in An Altered Forest Ecosystem using Radiotelemetry

Meristogenys orphnocnemis (Matsui, 1986)

[upper] Female Meristogenys orphnocnemis showing transmitter and attachment belt.
[lower] Section of stream in SAFE Project experimental site, known as logged forest edge (LFE) stream, where all radiotracking occurred.



 We tracked six female Meristogenys orphnocnemis for 17 ± 4.3 days (11.5–22 days) in Sabah, Malaysian Borneo to determine core area (home range size) and movement patterns. We found that the core usage area was 3351.0 ± 963.4 m2 . Mean distance of each female from the stream during tracking was between 4.9–29.3 m and median distance from the stream for individual females was 4–20 m. Net distance between first and last observation was 80.6 ± 24.5 m, and there was no relationship between number of days tracked and total distance traversed or core area size, nor between body size and core area size, though our sample sizes were likely too small to detect such patterns. We suggest additional radio-tracking to determine differences in movement ecology between sexes and across species, to better predict impacts on anurans from logging and fragmentation in Southeast Asia.

 Key words. behaviour, radio-tracking, frogs, Malaysia

Fig. 1. Section of stream in SAFE Project experimental site, known as logged forest edge (LFE) stream, where all radiotracking occurred.

 Jennifer A. Sheridan, Nicolas Rakotopare and Rachel Mebberson. 2017. Preliminary Estimation of Home Range Size for Meristogenys orphnocnemis, A Common Bornean Ranid, in An Altered Forest Ecosystem using Radiotelemetry. RAFFLES BULLETIN OF ZOOLOGY65; 539–544.